METHYL 3 $\alpha, 6 \alpha$-DIACETOXY-10-OXO-(7 α)-KEMP-11-EN-20-OATE: THE REVISED STRUCTURE FOR THE KEMPANE DERIVATIVE FROM THE FRONTAL GLAND SECRETION OF Nasutitermes costalis SOLDIERS

Silvio Cerrini ${ }^{a}$, Doriano Lamba ${ }^{a}$, Irena Valterova ${ }^{b}$, Miloš Buděšínský ${ }^{b}$, Jan Vrkoč ${ }^{b}$ and František Tureček ${ }^{c}$
${ }^{a}$ C.N.R. Istituto di Strutturistica Chimica, C.P. 10-00016, Monterotondo Stazione, Roma, Italy,
${ }^{b}$ Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, 16610 Prague 6, Czechoslovakia and
${ }^{c}$ The J. Heyrovský Institute of Physical Chemistry and Electrochemistry, Czechoslovak Academy of Sciences, 12138 Prague 2, Czechoslovakia

Received April 16th, 1986

The structure of methyl $3 \alpha, 6 \alpha$-diacetoxy-10-oxo-(7 α)-kemp-11-en-20-oate (II) was established by X-ray analysis for a defense compound of termites Nasutitermes costalis. The previously suggested structure I with 7β-kempane skeleton is revised.

On the basis of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR, UV, CD, and mass spectral data we have suggested ${ }^{1}$ structure I for one of the components of the frontal gland secretion of soldiers of the Nasutitermes costalis species. By means of X-ray analysis we now have established that the compound in question possesses a modified skeleton which differs from that of kempane in configuration at $C(7)$. The originally suggested structure I

1

"
should be therefore revised, and a new structure $I I$ is assigned to the defense compound. The present paper brings X-ray data establishing structure $I I$ and reinterpretates the NMR and mass spectral data on the basis of the revised structure.

X-Ray Analysis

Preliminary X-ray photographs showed that the crystals have orthorhombic symmetry. Systematic absences and approximate crystal density were consistent with the space group $P 2_{1} 2_{1} 2_{1}$ and one molecule, $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{7}, M=446 \cdot 540$, in the asymmetric unit. Accurate lattice constants

Table I
Positional parameters of atoms in II

Atom	x / a	y / b	z / c	Atom	x / a	y / b	z / c
$\mathrm{O}(1)$	-0.2172(10)	0.0423(6)	$0 \cdot 9079(2)$	H(1)	0.487	0.010	0.847
$\mathrm{O}(2)$	$0 \cdot 4787(11)$	-0.3441(6)	$0 \cdot 8945(2)$	H(21)	0.577	0.009	0.768
$O(3)$	$0 \cdot 1615(12)$	-0.1124(6)	$0 \cdot 7397(2)$	H(22)	$0 \cdot 350$	0.065	0.759
$\bigcirc(4)$	$0 \cdot 8184(14)$	$-0.3425(7)$	0.8933(3)	H(3)	0.461	-0.155	0.752
O(5)	$0 \cdot 3640(14)$	-0.0627(7)	$0.6841(2)$	H(51)	0.541	-0.300	0.818
O(6)	$0.0950(15)$	$0 \cdot 1607(8)$	0.9731(2)	H(52)	0.604	-0.172	0.820
O(7)	0.1893(13)	$0 \cdot 3274$ (6)	$0.9435(2)$	H(6)	0.577	-0.177	0.891
C(1)	0.3868(17)	$0.0459(8)$	$0.8265(3)$	H(7)	$0 \cdot 158$	-0.261	0.892
C(2)	$0 \cdot 4177(15)$	$0.0047(9)$	$0.7783(3)$	H(8)	0.339	-0.065	0.933
C(3)	$0 \cdot 3365(17)$	-0.1169(9)	$0.7683(3)$	H(91)	-0.081	-0.144	0.937
C(4)	$0 \cdot 2855(18)$	-0.1860(8)	$0.8096(3)$	H(92)	0.018	-0.058	0.970
C(5)	$0 \cdot 4952(20)$	-0.2206(9)	$0 \cdot 8287(3)$	H(131)	$0 \cdot 368$	0.310	0.873
C(6)	0.4709(16)	-0.2289(7)	$0 \cdot 8794(3)$	H(132)	0.527	0.213	0.892
C(7)	$0 \cdot 2545(14)$	-0.1882(7)	$0 \cdot 8893(3)$	H(141)	0.315	0.210	0.809
C(8)	$0 \cdot 2391(16)$	-0.1294(9)	$0.9338(3)$	H(142)	0.560	0.203	0.819
C(9)	$0.0222(16)$	-0.0829(9)	$0 \cdot 9421$ (3)	H(16)	0.025	-0.138	0.844
$\mathrm{C}(10)$	-0.0412(14)	0.0109(8)	$0 \cdot 9126(3)$	H(171)	0.021	$0 \cdot 131$	$0 \cdot 805$
C(11)	$0 \cdot 1320(15)$	$0 \cdot 0700(8)$	$0 \cdot 8866(3)$	H(172)	-0.007	0.004	0.785
C(12)	$0 \cdot 2222(14)$	$0 \cdot 1651(7)$	0.8994(3)	H(173)	-0.138	0.040	0.831
C(13)	$0 \cdot 3927(17)$	$0 \cdot 2226(9)$	0.8745 (3)	H(181)	0.140	-0.342	0.823
C(14)	0.4176(16)	$0 \cdot 1759(8)$	$0.8279(3)$	H(182)	0.037	-0.265	0.783
C(15)	$0 \cdot 1762(15)$	$0 \cdot 0065(8)$	$0 \cdot 8430$ (3)	H(183)	0.250	-0.341	0.775
$\mathrm{C}(16)$	0.1689(13)	-0.1248(7)	0.8475(2)	H(191)	$0 \cdot 447$	-0.235	0.970
$\mathrm{C}(17)$	$-0.0011(15)$	0.0475 (9)	$0 \cdot 8126(3)$	H(192)	$0 \cdot 291$	-0.162	0.997
$\mathrm{C}(18)$	0.1709(22)	-0.2962(10)	0.7969 (3)	H(193)	$0 \cdot 211$	-0.273	0.969
$\mathrm{C}(19)$	$0 \cdot 3041(23)$	-0.2037(11)	$0 \cdot 9706(3)$	H(211)	0.161	0.470	$0 \cdot 984$
C(20)	$0 \cdot 1595(18)$	$0 \cdot 2160(8)$	$0.9430(3)$	H(212)	-0.024	0.378	0.990
C(21)	0.1272(23)	0.3849(11)	$0.9846(4)$	H(213)	0.208	0.346	1.008
$\mathrm{C}(22)$	0-1940(20)	-0.0853(11)	$0 \cdot 6977(3)$	H(231)	-0.122	-0.104	$0 \cdot 690$
C(23)	$0 \cdot 0022(20)$	-0.0882(9)	0.6713(3)	H(232)	-0.015	-0.008	0.654
C(24)	$0 \cdot 6622(16)$	-0.3892(8)	0.9029 (3)	H(233)	0.007	-0.151	0.549
C(25)	$0 \cdot 6456(23)$	-0.5060(9)	$0 \cdot 9226$ (3)	H(251)	0.780	-0.544	0.929
				H(252)	0.562	-0.499	0.950
				H(253)	0.566	-0.555	$0 \cdot 901$

$a=6.540(1), b=11.743(2), c=30.504(6) \AA$ were determined from a least-square fit of the angular setting of fifteen selectéd reflections. Unique intensity data with $20 \leqq 110^{\circ}$ were measured on a computer controlled four-circle diffractometer, using variable $2 \theta-\theta$ scans and graphite--monochromated CuK_{α} radiation, $\left(\mathrm{CuK}_{\alpha}\right)=7.6 \mathrm{~cm}^{-1}$. Of the 1744 independent measured reflections, 1384 were considered significant ($I \geqq \sigma(I)$) and used for the structure elucidation. The crystal structure was solved by the multisolution direct method (SIR) (ref. ${ }^{2}$) using one-phase and two-phase semiinvariants to determine the starting set of phases, and negative quartets to discriminate the best set of refined phases. The positions of hydrogen atoms were found on difference Fourier synthesis $\left(\sin \theta / \lambda=0.45 \AA^{-1}\right)$; block-diagonal least-squares calculations with anisotropic thermal parameters for non-hydrogen atoms and isotropic B values (equal to that of the carrier atoms) for hydrogens have converged to the residual $R=0.077(R \omega=0.114)$ for the observed data. The calculations were carried out on the HP-1 000 computer of the C.N.R. research Area of Rome, using the set of programs of the reference 3.

The results of the X -ray analysis (positional parameters for carbon, oxygen, and hydrogen atoms) of compound $I I$ are presented in Table I (for numbering of atoms see formula IIa)*. The stereochemistry is shown in Fig. 1. No attempt has been made to determine the absolute configuration by measurements of X-ray anomalous disperion effects; the enantiomer depicted in Fig. 1 has configuration corresponding to that determined by CD measurements for kempane and trinervitane derivatives ${ }^{4,5}$.

Fig. 1
Perspective drawing of molecule $I I$

* Supplementary material containing side-chain torsion angles, bond distances and angles, anisotropic thermal parameters, observed and calculated structure factors and phases are deposited at the Cambridge Crystallographic Data Centre, U.K.

The conformation of the molecule is described by the torsion angles given in Table II. They allow us to assign a distorted twist form to the cyclohexane ring A, an envelope conformation to ring B with $C_{s}-C(16)$ pseudosymmetry ($\Delta C_{s}=6.4^{\circ}$), a half-chair conformation to the cyclohexene ring C with the pseudobinary axis

Table II
Skeleton torsion angles in compound $I I^{a}$

Ring A (cyclohexane)	Ring B (cyclopentane)		
$C(15)-C(1)-C(2)-C(3)$	$-39 \cdot 5$	$C(16)-C(4)-C(5)-C(6)$	$23 \cdot 7$
$C(1)-C(2)-C(3)-C(4)$	$-13 \cdot 5$	$C(4)-C(5)-C(6)-C(7)$	$-5 \cdot 2$
$C(2)-C(3)-C(4)-C(16)$	$43 \cdot 2$	$C(5)-C(6)-C(7)-C(16)$	$-15 \cdot 1$
$C(3)-C(4)-C(16)-C(15)$	$-16 \cdot 4$	$C(6)-C(7)-C(16)-C(4)$	$29 \cdot 0$
$C(4)-C(16)-C(15)-C(1)$	$-38 \cdot 6$	$C(7)-C(16)-C(4)-C(5)$	$-31 \cdot 6$
$C(16)-C(15)-C(1)-C(2)$	$67 \cdot 4$		
		Ring $D($ cycloheptanone $)$	
Ring $C($ cyclohexene $)$		$C(16)-C(7)-C(8)-C(9)$	$48 \cdot 8$
$C(14)-C(1)-C(15)-C(11)$	$-46 \cdot 6$	$C(7)-C(8)-C(9)-C(10)$	$-66 \cdot 3$
$C(1)-C(15)-C(11)-C(12)$	$20 \cdot 1$	$C(8)-C(9)-C(10)-C(11)$	$-15 \cdot 5$
$C(15)-C(11)-C(12)-C(13)$	$-3 \cdot 9$	$C(9)-C(10)-C(11)-C(15)$	$86 \cdot 7$
$C(11)-C(12)-C(13)-C(14)$	$13 \cdot 3$	$C(11)-C(11)-C(15)-C(16)$	$-39 \cdot 8$
$C(12)-C(13)-C(14)-C(1)$	$-39 \cdot 0$	$C(15)-C(16)-C(7)-C(8)$	$-38 \cdot 4$
$C(13)-C(14)-C(1)-C(15)$	$58 \cdot 9$		

[^0]passing through the middle points of $\mathrm{C}(1)-\mathrm{C}(14)$ and $\mathrm{C}(11)-\mathrm{C}(12)$ bonds $\left(\Delta C_{\mathrm{s}}=\right.$ $=6.3^{\circ}$), and boat conformation to the cycloheptanone ring D with pseudosymmetry $C_{\mathrm{s}}-\mathrm{C}(16)\left(\Delta C_{\mathrm{s}}=13.9^{\circ}\right)$. The most characteristic feature of the tetracyclic system concerns the junction of the rings. Indeed, the junction is cis between rings A and B, A and D , and B and D , trans between rings A and C , and quasi-trans between rings C and D. It is worth noting that the A / B and A / D cis junctions are peculiar

Table III
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound $I I$ in deuteriochloroform

Proton ${ }^{\text {a }}$	${ }^{1} \mathrm{H}$ NMR		
$\mathrm{C}(8)-\mathrm{CH}_{3}$	$0.97 \mathrm{~d}(3 \mathrm{H}), \mathrm{J}(19,8)=5.1$		
$\mathrm{C}(15)-\mathrm{CH}_{3}$	$1 \cdot 19 \mathrm{~s}(3 \mathrm{H})$		
$\mathrm{C}(4)-\mathrm{CH}_{3}$	$1.27 \mathrm{~s}(3 \mathrm{H})$		
H(22)	$1.44 \mathrm{dt}(1 \mathrm{H}), J(22,1)=J(22,21)=12 \cdot 5 ; J(22,3)=7 \cdot 7$		
$\mathrm{H}(21)$	$1 \cdot 98 \mathrm{ddd}(1 \mathrm{H}), J(21,1)=4 \cdot 0 ; J(21,3)=6 \cdot 3 ; J(21,22)=12.5$		
OAc	1.99 s		
OAc	2.05 s		
$\mathrm{H}(51), \mathrm{H}(52), \mathrm{H}(7), \mathrm{H}(8)$	$2.22 \mathrm{~m}(4 \mathrm{H})$		
H(1), H(91)	$2.40 \mathrm{~m}(2 \mathrm{H})$		
H(92)	$2 \cdot 89 \mathrm{~d}(1 \mathrm{H}), J(92,91)=13 \cdot 2 ; J(92,8) \cong 0$		
COOCH_{3}	$3.69 \mathrm{~s}(3 \mathrm{H})$		
H(3)	$4.79 \mathrm{dd}(1 \mathrm{H}), J(3,21)=6.3 ; J(3,22)=7.7$		
H(6)	$5 \cdot 05 \mathrm{~m}(1 \mathrm{H}), J(6,51)=7 \cdot 2 ; J(6 \cdot 52)=8 \cdot 6 ; J(6,7)=9.0$		
Carbon (assign.)	${ }^{13} \mathrm{CNMR}$	Carbon (assign.)	${ }^{13} \mathrm{C}$ NMR
$\mathrm{C}=\mathrm{O} \quad(10)$	$209 \cdot 1$	$-\mathrm{CH}_{2}-$	$43 \cdot 9$
$\mathrm{C}=\mathrm{O} \quad$ (22)	$170 \cdot 5$	$-\mathrm{C}-\quad$ (4)	41.0
$\mathrm{C}==0$ (24)	$170 \cdot 5$	$-\mathrm{CH}-$	$36 \cdot 2$
$\mathrm{C}=\mathrm{O} \quad$ (20)	$160 \cdot 7$	$-\mathrm{CH}-$	31.8
$-\mathrm{C}=$ (11)	$136 \cdot 1$	$-\mathrm{CH}_{2}$ -	30.6
- $\mathrm{C}=$ (12)	$121 \cdot 8$	$-\mathrm{CH}_{3}$	$26 \cdot 2$
- $\mathrm{CH}-\mathrm{O}$ (6)	77.0	$-\mathrm{CH}_{2}$ -	24.5
$-\mathrm{CH}-\mathrm{O}$ (3)	74.4	$-\mathrm{CH}_{3}$	$23 \cdot 6$
$-\mathrm{CH}-$	$54 \cdot 1$	$-\mathrm{CH}_{2}-$	$23 \cdot 2$
- $\mathrm{CH}-$	$53 \cdot 2$	$-\mathrm{CH}_{3}$ (23)	$21 \cdot 3$
- $\mathrm{C}-\quad$ (15)	52.0	$-\mathrm{CH}_{3}$ (25)	$21 \cdot 3$
$-\mathrm{OCH}_{3}$ (21)	52.0	$-\mathrm{CH}_{3}$	$19 \cdot 6$
$-\mathrm{CH}_{2}-$	$44 \cdot 3$		

[^1]for kempene derivatives which also have B / D junction of trans-type, while the B / D cis junction found in the present compound is characteristic of the trinervitane skeleton. The molecule II shows a dome-like shape in which most hydrogens and methyl substituents on the carbon skeleton protrude from the concave or convex face, while the oxygen-containing polar groups are located on the periphery.

Discussion of the Spectra

The revised structure requires that the previously suggested ${ }^{1}$ mechanism of the mass spectral fragmentation of $I I$ be revised either. The spectrum shows an ion series $\mathrm{M}^{+\cdot} \rightarrow \mathrm{C}_{1.6} \mathrm{H}_{21} \mathrm{O}_{4}^{+} \rightarrow \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{2}^{+} \rightarrow \mathrm{C}_{12} \mathrm{H}_{13}^{+}$arising by skeletal cleavage followed by loss of two molecules of acetic acid. The skeletal cleavage probably commences with opening of ring C , and requires a transfer of two hydrogen atoms onto the carbonyl-containing neutral fragment (Scheme 1).

The UV and CD spectra provide the following parameters: UV: $\lambda_{\text {sh }}=300 \mathrm{~nm}$ $(\varepsilon=8) ; \lambda_{\text {max }}=223.5 \mathrm{~nm}(\varepsilon=9180) . \mathrm{CD}: \Delta \varepsilon_{297}=-6 \cdot 16 ; \Delta \varepsilon_{268}=0 ; \Delta \varepsilon_{252}=$ $=+4.40 ; \Delta \varepsilon_{240}=0 ; \Delta \varepsilon_{212}=-17.321 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$. The CD values $\Delta \varepsilon_{2,12}=$ $=-17.32$ and $\Delta \varepsilon_{252}=+4.40$ and the absorption band at 223.5 nm were assigned to the α, β-unsaturated ester group. The values corresponding to the keto group ($\Delta \varepsilon_{297}=-6 \cdot 16$ and $\lambda_{\max }=300 \mathrm{~nm}$) were erroneously interpreted in the previous paper as excluding the presence of an α, β - or β, γ-enone arrangement, and subse-

Table IV

Comparison of X-ray and ${ }^{\mathbf{1}} \mathrm{H}$ NMR conformational data of compound II

Dihedral angle of protons $\mathrm{H}(i), \mathrm{H}(j)$	X-ray ${ }^{a}$ $\Phi(i, j)$	${ }^{1} \mathrm{HNMR}$	
		$J(i, j)$	$\Phi(i, j)^{b}$
$\mathrm{H}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(21)$	-49	$4 \cdot 0$	55
$\mathrm{H}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(22)$	-159	$12 \cdot 5$	170
$\mathrm{H}(21)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	-5	$6 \cdot 3$	40
$\mathrm{H}(22)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	109	$7 \cdot 7$	145
$\mathrm{H}(51)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	115	$7 \cdot 2$	140
$\mathrm{H}(52)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	2	$8 \cdot 6$	25
$\mathrm{H}(6)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	-150	$9 \cdot 0$	150
$\mathrm{H}(8)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(92)$	-71	$0 \cdot 0$	90

[^2]quently led to the suggested structure I. With the knowledge of the molecular geometry of $I I$, based on X-ray data, it now appears that these anomalous values correspond to the twisted α, β-enone group, where the torsion angle between the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{C}$ bonds is about $90^{\circ}\left(86.7^{\circ}\right.$ by X-ray analysis).

Scheme 1

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra obtained at 200 MHz , and 50.3 MHz resp., were impossible to assign completely due to the very small amount of the compound isolated. A partial assignment, based on structure II, is given in Table III. The vicinal coupling constants that can be extracted from the ${ }^{1} \mathrm{H}$ NMR spectrum and that provide some information on the spatial arrangement of molecular fragments show, however, that the conformation of $I I$ in solution may be slightly different from that found by X-ray analysis in the crystal (see Table IV).

REFERENCES

1. Valterová I., Buděšínský M., Tureček F., Vrkoč J.: This Journal 49, 2024 (1984).
2. Gascarano G., Giacovazzo C., Burla M. C., Nunzi A., Polidori G., Camalli M., Spagna R., Viterbo D.: Ninth Europ. Crystallographic Meeting, Torino (Italy) 1985. Abstr. Vol. 1, p. 79.
3. Cerrini S., Spagna R.: Fourth Europ. Crystallographic Meeting, Oxford (England) 1977. Abstr., p. 7.
4. Prestwich G. D., Solheim B. A., Clardy J., Pilkiewicz F. G., Miura I., Tanis S. P., Nakanishi K.: J. Am. Chem. Soc. 99, 8082 (1977).
5. Prestwich G. D., Tanis S. P., Pilkiewicz F. G., Miura I., Nakanishi K.: J. Am. Chem. Soc. 98, 6062 (1976).
6. Samek Z.: This Journal 43, 3210 (1978).

[^0]: ${ }^{a}$ The e.s.d.'s range between 1.7 and 0.7°, with a mean value of 1.1°.

[^1]: ${ }^{a}$ For numbering of protons see formula IIa.

[^2]: ${ }^{a}$ Dihedral angles calculated with the coordinates of Table I for the hydrogen and carbon atoms; ${ }^{b}$ determined from Karplus-like relation in ref. ${ }^{6}$; only absolute values of the angles are obtainable; where J value corresponds to two possible angles, only one, which is closer to $\Phi(i, j)$ from X-ray is given (rounded off to 5°).

