METHYL 3a,6a-DIACETOXY-10-OXO-(7a)-KEMP-11-EN-20-OATE: THE REVISED STRUCTURE FOR THE KEMPANE DERIVATIVE FROM THE FRONTAL GLAND SECRETION OF Nasutitermes costalis SOLDIERS

Silvio CERRINI^a, Doriano LAMBA^a, Irena VALTEROVÁ^b, Miloš BUDĚŠÍNSKÝ^b, Jan VRKOČ^b and František TUREČEK^c

^a C.N.R. Istituto di Strutturistica Chimica, C.P. 10-00016,

Monterotondo Stazione, Roma, Italy,

^b Institute of Organic Chemistry and Biochemistry,

Czechoslovak Academy of Sciences, 166 10 Prague 6, Czechoslovakia and

^c The J. Heyrovský Institute of Physical Chemistry and Electrochemistry,

Czechoslovak Academy of Sciences, 121 38 Prague 2, Czechoslovakia

Received April 16th, 1986

The structure of methyl $3\alpha,6\alpha$ -diacetoxy-10-oxo- (7α) -kemp-11-en-20-oate (II) was established by X-ray analysis for a defense compound of termites *Nasutitermes costalis*. The previously suggested structure I with 7\beta-kempane skeleton is revised.

On the basis of ¹H, ¹³C NMR, IR, UV, CD, and mass spectral data we have suggested¹ structure *I* for one of the components of the frontal gland secretion of soldiers of the *Nasutitermes costalis* species. By means of X-ray analysis we now have established that the compound in question possesses a modified skeleton which differs from that of kempane in configuration at C(7). The originally suggested structure *I*

should be therefore revised, and a new structure *II* is assigned to the defense compound. The present paper brings X-ray data establishing structure *II* and reinterpretates the NMR and mass spectral data on the basis of the revised structure.

X-Ray Analysis

Preliminary X-ray photographs showed that the crystals have orthorhombic symmetry. Systematic absences and approximate crystal density were consistent with the space group $P2_12_12_1$ and one molecule, $C_{25}H_{34}O_7$, M = 446.540, in the asymmetric unit. Accurate lattice constants

TABLE I Positional parameters of atoms in II

Atom	x/a	у/b	z/c	Atom	x/a	y/b	z/c
O(1)	-0.2172(10)	0.0423(6)	0.9079(2)	H (1)	0-487	0.010	0.847
O(2)	0.4787(11)	-0.3441(6)	0.8945(2)	H(21)	0.577	0.009	0.768
O(3)	0.1615(12)	-0.1124(6)	0.7397(2)	H(22)	0.320	0.065	0.759
O(4)	0.8184(14)	-0.3425(7)	0.8933(3)	H(3)	0.461	-0.155	0.752
O(5)	0.3640(14)	-0.0627(7)	0.6841(2)	H(51)	0.541	-0.300	0.818
O(6)	0.0950(15)	0.1607(8)	0.9731(2)	H(52)	0.604	-0.172	0.820
O(7)	0.1893(13)	0.3274(6)	0.9435(2)	H(6)	0.222	-0.177	0.891
C(1)	0.3868(17)	0.0459(8)	0.8265(3)	H(7)	0.158	-0.261	0.892
C(2)	0.4177(15)	0.0047(9)	0.7783(3)	H(8)	0.339	-0.065	0.933
C(3)	0.3365(17)	-0.1169(9)	0.7683(3)	H(91)	-0.081	-0.144	0.937
C(4)	0.2855(18)	-0.1860(8)	0.8096(3)	H(92)	0.018	-0.028	0.970
C(5)	0.4952(20)	-0.2206(9)	0.8287(3)	H(131)	0.368	0.310	0.873
C(6)	0.4709(16)	-0.2289(7)	0.8794(3)	H(132)	0.527	0.213	0.892
C(7)	0.2545(14)	-0-1882(7)	0.8893(3)	H(141)	0.315	0.210	0.809
C(8)	0.2391(16)	0-1294(9)	0.9338(3)	H(142)	0.560	0.203	0.819
C(9)	0.0222(16)	-0.0829(9)	0.9421(3)	H(16)	0.025	-0.138	0.844
C(10)	-0.0412(14)	0.0109(8)	0.9126(3)	H(171)	0.021	0.131	0.802
C(11)	0.1320(15)	0.0700(8)	0.8866(3)	H(172)	-0.001	0.004	0.785
C(12)	0.2222(14)	0.1651(7)	0.8994(3)	H(173)	-0.138	0.040	0.831
C(13)	0.3927(17)	0.2226(9)	0.8745(3)	H(181)	0.140	-0.342	0.823
C(14)	0.4176(16)	0.1759(8)	0.8279(3)	H(182)	0.037	-0.265	0.783
C(15)	0.1762(15)	0.0065(8)	0.8430(3)	H(183)	0.250	-0.341	0.775
C(16)	0.1689(13)	-0.1248(7)	0.8475(2)	H(191)	0.447	-0.235	0.970
C(17)	-0.0011(15)	0.0475(9)	0.8126(3)	H(192)	0.291	-0.162	0.997
C(18)	0.1709(22)	-0.2962(10)	0.7969(3)	H(193)	0.211	-0.273	0.969
C(19)	0.3041(23)	-0.2037(11)	0.9706(3)	H(211)	0.161	0.470	0.984
C(20)	0.1595(18)	0.2160(8)	0.9430(3)	H(212)	-0.024	0.378	0.990
C(21)	0.1272(23)	0.3849(11)	0.9846(4)	H(213)	0.208	0.346	1.008
C(22)	0-1940(20)	-0.0853(11)	0.6977(3)	H(231)	-0.122	-0.104	0.690
C(23)	0.0022(20)	-0.0882(9)	0.6713(3)	H(232)	-0.012	-0.008	0.654
C(24)	0.6622(16)	-0.3892(8)	0.9029(3)	H(233)	0.007	0-151	0.549
C(25)	0.6456(23)	-0.5060(9)	0.9226(3)	H(251)	0.780	-0.544	0.929
				H(252)	0.562	-0.499	0.950
				H(253)	0.266	-0.555	0.901

a = 6.540(1), b = 11.743(2), c = 30.504(6) Å were determined from a least-square fit of the angular setting of fifteen selected reflections. Unique intensity data with $2\theta \leq 110^{\circ}$ were measured on a computer controlled four-circle diffractometer, using variable $2\theta - \theta$ scans and graphite-monochromated CuK_a radiation, (CuK_a) = 7.6 cm⁻¹. Of the 1 744 independent measured reflections, 1 384 were considered significant ($I \geq \sigma(I)$) and used for the structure elucidation. The crystal structure was solved by the multisolution direct method (SIR) (ref.²) using one-phase and two-phase semiinvariants to determine the starting set of phases, and negative quartets to discriminate the best set of refined phases. The positions of hydrogen atoms were found on difference Fourier synthesis ($\sin \theta/\lambda = 0.45$ Å⁻¹); block-diagonal least-squares calculations with anisotropic thermal parameters for non-hydrogen atoms and isotropic *B* values (equal to that of the carrier atoms) for hydrogens have converged to the residual R = 0.077 ($R\omega = 0.114$) for the observed data. The calculations were carried out on the HP-1 000 computer of the C.N.R. research Area of Rome, using the set of programs of the reference 3.

The results of the X-ray analysis (positional parameters for carbon, oxygen, and hydrogen atoms) of compound II are presented in Table I (for numbering of atoms see formula IIa)*. The stereochemistry is shown in Fig. 1. No attempt has been made to determine the absolute configuration by measurements of X-ray anomalous disperion effects; the enantiomer depicted in Fig. 1 has configuration corresponding to that determined by CD measurements for kempane and trinervitane derivatives^{4,5}.

FIG. 1 Perspective drawing of molecule II

* Supplementary material containing side-chain torsion angles, bond distances and angles, anisotropic thermal parameters, observed and calculated structure factors and phases are deposited at the Cambridge Crystallographic Data Centre, U.K.

The conformation of the molecule is described by the torsion angles given in Table II. They allow us to assign a distorted twist form to the cyclohexane ring A, an envelope conformation to ring B with C_s —C(16) pseudosymmetry ($\Delta C_s = 6.4^\circ$), a half-chair conformation to the cyclohexene ring C with the pseudobinary axis

TABLE II Skeleton torsion angles in compound II^a

Ring A (cyclohexane)	
C(15) - C(1) - C(2) - C(3)	

(

C(1) - C(2) - C(3) - C(4)	-13.3
C(2) - C(3) - C(4) - C(16)	43.2
C(3) - C(4) - C(16) - C(15)	-16·4
C(4) - C(16) - C(15) - C(1)	-38.6
C(16) - C(15) - C(1) - C(2)	67•4
Ring C (cyclohexene)	

C(14) - C(1) - C(15) - C(11)	- 46.6
C(1) - C(15) - C(11) - C(12)	20.1
C(15) - C(11) - C(12) - C(13)	<u> </u>
C(11) - C(12) - C(13) - C(14)	13.3
C(12) - C(13) - C(14) - C(1)	39.0
C(13) - C(14) - C(1) - C(15)	58.9

Ring B (cyclopentane)

C(16)-C(4)-C(5)-C(6)	23.7
C(4) - C(5) - C(6) - C(7)	-5.2
C(5)C(6)C(7)C(16)	15•1
C(6)—C(7)—C(16)—C(4)	29.0
C(7) - C(16) - C(4) - C(5)	31.6

Ring D (cycloheptanone)

C(16) - C(7) - C(8) - C(9)	48.8
C(7) - C(8) - C(9) - C(10)	-66.3
C(8) - C(9) - C(10) - C(11)	15.5
C(9) - C(10) - C(11) - C(15)	86.7
C(10) - C(11) - C(15) - C(16)	- 39.8
C(11) - C(15) - C(16) - C(7)	- 38·4
C(15) - C(16) - C(7) - C(8)	32.7

^{*a*} The e.s.d.'s range between 1.7 and 0.7° , with a mean value of 1.1° .

39.5

10 5

passing through the middle points of C(1)—C(14) and C(11)—C(12) bonds ($\Delta C_s = 6\cdot3^\circ$), and boat conformation to the cycloheptanone ring D with pseudosymmetry C_s —C(16) ($\Delta C_s = 13\cdot9^\circ$). The most characteristic feature of the tetracyclic system concerns the junction of the rings. Indeed, the junction is *cis* between rings A and B, A and D, and B and D, *trans* between rings A and C, and quasi-*trans* between rings C and D. It is worth noting that the A/B and A/D *cis* junctions are peculiar

TABLE III ¹H and ¹³C NMR data of compound *II* in deuteriochloroform

Proton ^a	¹ H N	MR				
C(8)—CH ₂	0·97 d (3 H), <i>J</i> (1	19.8) = 5.1				
C(15)-CH ₁	1.19 s (3 H)	, ,				
C(4)—CH ₃	1·27 s (3 H)					
H(22)	1.44 dt (1 H), J((22,1) = J(22,21) = 12.5; J(22,21) = 1	(22,3) = 7.7			
H(21)	1.98 ddd (1 H),	J(21,1) = 4.0; J(21,3) = 6.	3; J(21,22) = 12.5			
OAc	1·99 s					
OAc	2.05 s					
H(51), H(52), H(7), H(8)	2·22 m (4 H)					
H(1), H(91)	2·40 m (2 H)					
H(92)	2·89 d (1 H), J(9	$(92,91) = 13.2; J(92,8) \cong 0$				
COOCH ₃	3·69 s (3 H)	3.69 s (3 H)				
H(3)	4·79 dd (1 H), J	79 dd (1 H), $J(3,21) = 6.3$; $J(3,22) = 7.7$				
H(6)	5·05 m (1 H), J((6,51) = 7.2; J(6.52) = 8.6;	J(6,7) = 9.0			
Carbon (assign.)	¹³ C NMR	Carbon (assign.)	¹³ C NMR			
C==0 (10)	209.1	—СН-	43.9			
C = 0 (22)	170.5	C (4)	41.0			
C==0 (24)	170-5		36.2			
C=O (20)	160.7	CH	31.8			
-C= (11)	136-1		30.6			
-C== (12)	121-8	CH ₃	26.2			
CHO (6)	77-0		24.5			
—CH—O (3)	74•4	$-CH_3$	23.6			
CH	54.1		23.2			
—СН—	53-2	CH ₃ (23)	21.3			
C (15)	52.0	$-CH_3$ (25)	21.3			
—OCH ₃ (21)	52.0	-CH ₃	19.6			
	44.3					

^a For numbering of protons see formula IIa.

for kempene derivatives which also have B/D junction of *trans*-type, while the B/D *cis* junction found in the present compound is characteristic of the trinervitane skeleton. The molecule *II* shows a dome-like shape in which most hydrogens and methyl substituents on the carbon skeleton protrude from the concave or convex face, while the oxygen-containing polar groups are located on the periphery.

Discussion of the Spectra

The revised structure requires that the previously suggested¹ mechanism of the mass spectral fragmentation of *II* be revised either. The spectrum shows an ion series $M^{+} \rightarrow C_{16}H_{21}O_4^+ \rightarrow C_{14}H_{17}O_2^+ \rightarrow C_{12}H_{13}^+$ arising by skeletal cleavage followed by loss of two molecules of acetic acid. The skeletal cleavage probably commences with opening of ring C, and requires a transfer of two hydrogen atoms onto the carbonyl-containing neutral fragment (Scheme 1).

The UV and CD spectra provide the following parameters: UV: $\lambda_{sh} = 300 \text{ nm}$ ($\varepsilon = 8$); $\lambda_{max} = 223.5 \text{ nm}$ ($\varepsilon = 9.180$). CD: $\Delta \varepsilon_{297} = -6.16$; $\Delta \varepsilon_{268} = 0$; $\Delta \varepsilon_{252} = +4.40$; $\Delta \varepsilon_{240} = 0$; $\Delta \varepsilon_{212} = -17.32 \text{ lmol}^{-1} \text{ cm}^{-1}$. The CD values $\Delta \varepsilon_{212} = -17.32 \text{ and } \Delta \varepsilon_{252} = +4.40$ and the absorption band at 223.5 nm were assigned to the α,β -unsaturated ester group. The values corresponding to the keto group ($\Delta \varepsilon_{297} = -6.16$ and $\lambda_{max} = 300 \text{ nm}$) were erroneously interpreted in the previous paper as excluding the presence of an α,β - or β,γ -enone arrangement, and subse-

Dihedral angle	X-ray ^a	¹ H 1	NMR
of protons $H(i)$, $H(j)$	$\Phi(i,j)$	J(i, j)	$\Phi(i,j)^b$
H(1) - C(1) - C(2) - H(21)	-49	4.0	55
H(1) - C(1) - C(2) - H(22)	- 159	12.5	170
H(21) - C(2) - C(3) - H(3)	-5	6.3	40
H(22) - C(2) - C(3) - H(3)	109	7.7	145
H(51) - C(5) - C(6) - H(6)	115	7.2	140
H(52)-C(5)-C(6)-H(6)	2	8.6	25
H(6) - C(6) - C(7) - H(7)	-150	9.0	150
H(8) - C(8) - C(9) - H(92)	71	0.0	90

TABLE IV

Comparison of X	-ray and ¹ H NMR	conformational	data of	compound II
-----------------	-----------------------------	----------------	---------	-------------

^a Dihedral angles calculated with the coordinates of Table I for the hydrogen and carbon atoms; ^b determined from Karplus-like relation in ref.⁶; only absolute values of the angles are obtainable; where J value corresponds to two possible angles, only one, which is closer to $\Phi(i, j)$ from X-ray is given (rounded off to 5°).

Collection Czechoslovak Chem. Commun. [Vol. 52] [1987]

712

quently led to the suggested structure *I*. With the knowledge of the molecular geometry of *II*, based on X-ray data, it now appears that these anomalous values correspond to the twisted α,β -enone group, where the torsion angle between the C=O and C=C bonds is about 90° (86.7° by X-ray analysis).

SCHEME 1

The ¹H and ¹³C NMR spectra obtained at 200 MHz, and 50.3 MHz resp., were impossible to assign completely due to the very small amount of the compound isolated. A partial assignment, based on structure II, is given in Table III. The vicinal coupling constants that can be extracted from the ¹H NMR spectrum and that provide some information on the spatial arrangement of molecular fragments show, however, that the conformation of II in solution may be slightly different from that found by X-ray analysis in the crystal (see Table IV).

REFERENCES

- 1. Valterová I., Buděšínský M., Tureček F., Vrkoč J.: This Journal 49, 2024 (1984).
- 2. Gascarano G., Giacovazzo C., Burla M. C., Nunzi A., Polidori G., Camalli M., Spagna R., Viterbo D.: Ninth Europ. Crystallographic Meeting, Torino (Italy) 1985. Abstr. Vol. 1, p. 79.
- 3. Cerrini S., Spagna R.: Fourth Europ. Crystallographic Meeting, Oxford (England) 1977. Abstr., p. 7.
- 4. Prestwich G. D., Solheim B. A., Clardy J., Pilkiewicz F. G., Miura I., Tanis S. P., Nakanishi K.: J. Am. Chem. Soc. 99, 8082 (1977).
- 5. Prestwich G. D., Tanis S. P., Pilkiewicz F. G., Miura I., Nakanishi K.: J. Am. Chem. Soc. 98, 6062 (1976).
- 6. Samek Z.: This Journal 43, 3210 (1978).